Product Summary
- Multi purpose, 100% solids, ceramic/metal epoxy engineering resurface grade specially designed to protect equipment suffering from corrosion/erosion.
- Easy application due to extended potlife with short hardening and service time.
- Self priming bonding tenaciously to steel, stainless steel, cast iron, copper, bronze, aluminium, alloys and concrete.
- Very high sliding abrasion resistance.
- Very smooth frictionless finish.

DuraPol SuperAbrasion is a hand applied coating specifically designed for providing very high abrasion resistance to areas suffering erosion and wear damage from impacting particles and especially resistant to fine particle abrasion. Can be applied up to a DFT of 15 mm.

Application Areas
Repair of tanks, pipes, flange face, casings, shafts, hydraulic rams, bearing housings due to corrosion, particle erosion or chemical attack. Is not recommended for cavitation erosion due to high fluid flow - refer to DuraPol for a suitable product in this situation.

Physical Properties
- **Abrasion Resistance**: ASTM D 4060
 10 mg weight loss [Tabor CS-17/1kg/1000 cycles]
- **Barcol Hardness**: ASTM D-2583
 55
- **Adhesive Strength**: ASTM D4541
 250 kg cm-2 (cohesive failure)
- **Elongation to break**: BS 6319 Part 7 1985
 2.0 %
- **Tensile Strength**: BS 6319 Part 7 1985
 380 kg cm-2
- **Impact resistance**: ASTM G14
 Forward: 12 Joules
 Reverse: 6 Joules
- **Temperature Resistance**: NACE TM0174
 90°C Immersed
 +150°C Non Immersed

Typical Chemical Resistance (full immersion)
- Crude Oil (Sweet or Sour)
- Kerosene
- Sulphuric Acid (50%)
- Hydrochloric Acid (35%)
- Demineralised Water
- Nitric Acid (15%)
- Acetic Acid (30%)
- Diethanolamine
- Acetone
- Sodium Hydroxide (50%)
- Sodium Hypochlorite (15%)
- Methanol

Coating Data
- **Finish**: Smooth and Glossy
- **Colours**: Dark Grey
- **Solids Content**: 100%
- **Mixed Viscosity**: 125,000 +/- 5000 cPoise
- **Typical Dry Film thickness**: up to 2 millimetres
- **Number of Coats**: 1 - 2
- **Coverage of 1kg kit @ 2 mm**: 0.25 m²
- **Pot Life / Working Life at 20°C**: 20 minutes
- **Initial Set / Drying Time at 20°C**: 220 minutes
- **Machining Time at 20°C**: 8 hours
- **Dry Service Time at 20°C**: 2 days
- **Immersion Service Time at 20°C**: 7 days
- **Storage Life**: 72 months minimum in unopened containers when maintained between 5 and 35°C
- **Packaging**: 1 kg composite kit
- **Specific Gravity**: 2.4 gms/cm³ (Base + Hardener)

Surface Preparation
Remove all loose rust and dirt using a metal scraper. Remove oil or greases from surface using cleaning solvents that leave no residue once evaporated such as methyl ethyl ketone (MEK) or acetone. Surface should be roughened using a needle gun, angle grinder or ideally grit blasted using angular grit to give a surface profile greater than 50 microns (SA 2.5). Remove residual dirt and grit using a vacuum. If surface has been immersed in salt water then surface needs to be washed with fresh water before blasting. Once the surface is prepared it should be coated immediately to avoid surface oxidation and contamination.
Mixing of DuraPol SuperAlloy

Ensure that the base and hardener temperature is no higher than 20°C before mixing. The base is mixed continuously as the hardener is added. Allow further 2 minutes mixing time after addition of all hardener. Scrape inside surface of the container with a pallet knife so that all material is well mixed. Do not mix more material than can be used within the pot life period.

Application Equipment

Stiff bristle brush or trowel

Application of DuraPol SuperAlloy

Stripe coat corners and edges. If the surface to be coated is porous and very rough then it may be necessary to thin the mixed coating with 1 – 2% xylene before applying a thin primer layer to wet out and seal the substrate. As soon as this primer coat is dry apply main build coat. Press material into primed substrate so that it is completely wetted out before applying further material to fill the eroded area so that it is flush with the original surface of component. If a second coat is needed then this should be applied the same day otherwise lightly abrade the cured coating surface before applying another layer. After required thickness has been applied lightly brush surface to get even finish. This can be greatly assisted if the brush is lightly soaked in xylene and then used to brush over repaired surface. Allow coating to reach full cure at ambient temperature before putting into service. After coating the brush should be immediately cleaned with MEK or acetone based thinners. See above Coating Data for details of time required for type of service envisaged.

Dry Coating QC

24 hours after application check the continuity of the applied coating using a holiday detector set at a DC operating voltage of 100V/mil. A quantitative measure of the dry coating thickness can be obtained using an inductance type electronic dry film thickness tester. Pinholes, misses and thin areas of coating should be identified for repair using a distinctive marker pen. Repair by spot blasting the defect to bare metal with a profile of at least 75 microns and additionally sweep blasting a 2 inch radius of sound coating surrounding the defect for overlap of the repair. The prepared area is cleaned with xylene before application of the repair.

Cure Schedule

Coating is touch dry after ~ 220 minutes at 20°C. Allow minimum period of 3 days at 20°C to reach full cure before exposing to a full chemical load. To maximise chemical resistance after the 3 days ambient cure the coating can be post cured at 100°C for 4 hours.